我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:彩63彩票注册 > 多分辨率分析 >

图像缩放的放大算法

归档日期:08-10       文本归类:多分辨率分析      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  图像放大几乎都是采用内插值方法,即在原有图像像素的基础上在像素点之间采用合适的插值算法插入新的元素。 对插值算法分类比较混乱,各人有各人的分类算法。文献《图像插值技术综述》 中简略的将插值算法分为传统插值、 基于边缘的插值和基于区域的插值3类,作为初学者入门明晰插值算法还是有帮助。

  在传统图像插值算法中,邻插值较简单,容易实现,早期的时候应用比较普遍。但是,该方法会在新图像中产生明显的锯齿边缘和马赛克现象。双线性插值法具有平滑功能,能有效地克服邻法的不足,但会退化图像的高频部分,使图像细节变模糊。在放大倍数比较高时,高阶插值,如双三次和三次样条插值等比低阶插值效果好。这些插值算法可以使插值生成的像素灰度值延续原图像灰度变化的连续性,从而使放大图像浓淡变化自然平滑。但是在图像中,有些像素与相邻像素间灰度值存在突变,即存在灰度不连续性。这些具有灰度值突变的像素就是图像中描述对象的轮廓或纹理图像的边缘像素。在图像放大中,对这些具有不连续灰度特性的像素,如果采用常规的插值算法生成新增加的像素,势必会使放大图像的轮廓和纹理模糊,降低图像质量。

  为了克服传统方法的不足, 提出了许多边缘保护的插值方法,对插值图像的边缘有一定的增强, 使得图像的视觉效果更好, 边缘保护的插值方法可以分为两类: 基于原始低分辨图像边缘的方法和基于插值后高分辨率图像边缘的方法。基于原始低分辨率图像边缘的方法:( 1)首先检测低分辨率图像的边缘, 然后根据检测的边缘将像素分类处理, 对于平坦区域的像素,采用传统方法插值;对于边缘区域的像素, 设计特殊插值方法, 以达到保持边缘细节的目的。(2)基于插值后高分辨率图像边缘的方法这类插值方法:首先采用传统方法插值低分辨率图像,然后检测高分辨率图像的边缘,最后对边缘及附近像素进行特殊处理, 以去除模糊, 增强图像的边缘。

  首先将原始低分辨率图像分割成不同区域,然后将插值点映射到低分辨率图像, 判断其所属区域, 最后根据插值点的邻域像素设计不同的插值公式, 计算插值点的值。 上述文献所阐述的分类方法可以参考,但文献阐述的方法过于狭隘,都是在线性方法上的基础做改良。偏微分方程插值(PDE),分形,小波逆向插值这三种也是插值算法的主流之一。小波与分形算法计算复杂度高,效果较好,小波边缘处理最好,分形次之。

  小波插值充分利用 了图像奇异特征沿小波分解尺 度的传播性 , 能够更准确地重建出高分辨率图像细节。 但由于小波系数奇异值 的定位涉及精确复杂的边缘检 测且小波系数很难跨 尺度对准, 使得算法实现十分复杂。基于小波插值 的算法主要有两种, 分别为子带插值 和极值外推插值。小波变换本质上是用小波函数作为

  带通滤波器进行滤波, 将原始信号分解为一系列频带上 的信号由小波函数簇定义小波变换为: 小波插值公式1。

  小波插值公式3:推广出二维离散小波变换, 对数字图像进行重构和插值。 如果图像 是空问频率有限的二维信号, 对图像进行相应频窗的小 波反变换得到的图像就可认为是对该图像的插值。

  分形图像是一种具有复杂几何形状,不规则的图像 ,但其内部基本特征是自相似性 ,它反映了局部与局部 ,局部与整体在形态、 功能、 时空等方面具有统计意义的相似性.提高图像分辨率的简单有效的方法是进行内插 ,但经通常的内插后 ,图像的纹理特征会有损失 ,利用分形插值方法可以生成高分辨率的图像 ,而且能保持原来图像的纹理特征.

本文链接:http://art-olivier.com/duofenbianlvfenxi/1143.html